
Preliminary Comments

WaffleStay
CertiK Verified on Nov 21st, 2022

Executive Summary

Vulnerability Summary

1 Critical 1 Resolved

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

2 Major 2 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

1 Minor 1 Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

1 Informational 1 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

0 Discussion
The impact of the issue is yet to be determined, hence

requires further clarifications from the project team.

SUMMARY WAFFLESTAY

CertiK Verified on Nov 21st, 2022

WaffleStay

These preliminary comments were prepared by CertiK, the leader in Web3.0 security.

TYPES

ERC-20

ECOSYSTEM

Ethereum

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 11/21/2022

KEY COMPONENTS

N/A

CODEBASE
https://github.com/wafflestay/WAFL

...View All

COMMITS
2ed0393aa783ca175d9ca01e9c9a924b038ebd04

cbfa735b73c9e98c6f1a6918c5d9e9f9350d781c

e8e0a3cc777e7c6a642c27b5a43941ed0a1c2f9b

...View All

5
Total Findings

3
Resolved

0
Mitigated

0
Partially Resolved

2
Acknowledged

0
Declined

0
Unresolved

https://github.com/wafflestay/WAFL
https://github.com/wafflestay/WAFL/tree/2ed0393aa783ca175d9ca01e9c9a924b038ebd04
https://github.com/wafflestay/WAFL/tree/cbfa735b73c9e98c6f1a6918c5d9e9f9350d781c
https://github.com/wafflestay/WAFL/tree/e8e0a3cc777e7c6a642c27b5a43941ed0a1c2f9b

TABLE OF CONTENTS WAFFLESTAY

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

GLOBAL-01 : Centralization Risks in WaffleStay.sol

WSE-01 : Missing Check For `verifyMultiSig()` in `freezeAccount()` and `unFreezeAccount()`

WSE-02 : Initial Token Distribution

WSE-03 : Potential Initialization By Frontrunner

WSE-04 : Missing Check For `v` And `s`

Optimizations

WSE-05 : Functions Can Be Merged

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS WAFFLESTAY

CODEBASE WAFFLESTAY

Repository

https://github.com/wafflestay/WAFL

Commit

2ed0393aa783ca175d9ca01e9c9a924b038ebd04

cbfa735b73c9e98c6f1a6918c5d9e9f9350d781c

e8e0a3cc777e7c6a642c27b5a43941ed0a1c2f9b

CODEBASE WAFFLESTAY

https://github.com/wafflestay/WAFL
https://github.com/wafflestay/WAFL/tree/2ed0393aa783ca175d9ca01e9c9a924b038ebd04
https://github.com/wafflestay/WAFL/tree/cbfa735b73c9e98c6f1a6918c5d9e9f9350d781c
https://github.com/wafflestay/WAFL/tree/e8e0a3cc777e7c6a642c27b5a43941ed0a1c2f9b

AUDIT SCOPE WAFFLESTAY

1 file audited 1 file with Acknowledged findings

ID File SHA256 Checksum

WSE
WAFL/WaffleStayERC20.s

ol

484d055134a43f048194db6673fb811b53b93c4de81492d336c8f6a55094eb

65

AUDIT SCOPE WAFFLESTAY

APPROACH & METHODS WAFFLESTAY

This report has been prepared for WaffleStay to discover issues and vulnerabilities in the source code of the WaffleStay

project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices.
We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS WAFFLESTAY

FINDINGS WAFFLESTAY

This report has been prepared to discover issues and vulnerabilities for WaffleStay. Through this audit, we have uncovered 5

issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to complement

rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

GLOBAL-01 Centralization Risks In WaffleStay.Sol
Centralization

/ Privilege
Major Acknowledged

WSE-01

Missing Check For verifyMultiSig() In

freezeAccount() And

unFreezeAccount()

Logical Issue Critical Resolved

WSE-02 Initial Token Distribution
Centralization

/ Privilege
Major Acknowledged

WSE-03 Potential Initialization By Frontrunner Volatile Code Minor Resolved

WSE-04 Missing Check For v And s Logical Issue Informational Resolved

FINDINGS WAFFLESTAY

5
Total Findings

1
Critical

2
Major

0
Medium

1
Minor

1
Informational

0
Discussion

https://accelerator.audit.certikpowered.info/project/103aadf0-44d4-11ed-bbf3-df7ec279e9a1/report?fid=1666496452466
https://accelerator.audit.certikpowered.info/project/103aadf0-44d4-11ed-bbf3-df7ec279e9a1/report?fid=1667856968701
https://accelerator.audit.certikpowered.info/project/103aadf0-44d4-11ed-bbf3-df7ec279e9a1/report?fid=1666496617253
https://accelerator.audit.certikpowered.info/project/103aadf0-44d4-11ed-bbf3-df7ec279e9a1/report?fid=1667858589895
https://accelerator.audit.certikpowered.info/project/103aadf0-44d4-11ed-bbf3-df7ec279e9a1/report?fid=1667858363070

GLOBAL-01 CENTRALIZATION RISKS IN WAFFLESTAY.SOL

Category Severity Location Status

Centralization / Privilege Major Acknowledged

Description

In the contract Ownable the role _owner has authority over the functions shown in the diagram below.

Authenticated Role

Function

Function Calls
Function

_owner

transferOwnership

renounceOwnership
_transferOwnership

In the contract WaffleStayERC20 the role _owner has authority over the functions shown in the diagram below.

Authenticated Role

Function

Function
_owner

unFreezeAccount

freezeAccount

Any compromise to the _owner account may allow the hacker to take advantage of this authority and update the sensitive

settings and execute sensitive functions of the project

Recommendation

GLOBAL-01 WAFFLESTAY

https://accelerator.audit.certikpowered.info/project/103aadf0-44d4-11ed-bbf3-df7ec279e9a1/report?fid=1666496452466

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets.
Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

GLOBAL-01 WAFFLESTAY

WSE-01 MISSING CHECK FOR verifyMultiSig() IN

freezeAccount() AND unFreezeAccount()

Category Severity Location Status

Logical Issue Critical WAFL/WaffleStayERC20.sol (cbfa735): 556, 570 Resolved

Description

In the functions freezeAccount() and unFreezeAccount() , the verifyMultiSig() is invoked to verify the signature of

the operator. However everyone can input an empty signatures with a length of 0, and then bypass the checks in the

for loop in the verifyMultiSig()

Recommendation

We advise the team to consider adding a check to guarantee the length of signatures is not 0 in the functions

freezeAccount() and unFreezeAccount() and preferably check if a valid signature is provided in these two functions

input according to design.

Meanwhile, we advise adding a check to the return value of verifyMultiSig() as it will return a boolean value.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in WaffleStay.sol in the commit

e8e0a3cc777e7c6a642c27b5a43941ed0a1c2f9b

WSE-01 WAFFLESTAY

https://accelerator.audit.certikpowered.info/project/103aadf0-44d4-11ed-bbf3-df7ec279e9a1/report?fid=1667856968701
https://github.com/wafflestay/WAFL/tree/e8e0a3cc777e7c6a642c27b5a43941ed0a1c2f9b

WSE-02 INITIAL TOKEN DISTRIBUTION

Category Severity Location Status

Centralization / Privilege Major WAFL/WaffleStayERC20.sol (2ed0393): 319 Acknowledged

Description

All of the WaffleStay tokens are sent to the contract deployer when deploying the contract. This could be a centralization

risk as the deployer can distribute WaffleStay tokens without obtaining the consensus of the community.

Recommendation

We recommend the team to be transparent regarding the initial token distribution process, and the team shall make enough

efforts to restrict the access of the private key.

WSE-02 WAFFLESTAY

https://accelerator.audit.certikpowered.info/project/103aadf0-44d4-11ed-bbf3-df7ec279e9a1/report?fid=1666496617253

WSE-03 POTENTIAL INITIALIZATION BY FRONTRUNNER

Category Severity Location Status

Volatile Code Minor WAFL/WaffleStayERC20.sol (cbfa735): 535 Resolved

Description

In the WaffleStayERC20 contract, the function initSigners() can be called by anyone to initialize the contract with the

signers. Although the project deployer can discard incorrectly initialized contracts, it might still bring errors if the deployment

is not properly processed. One of the possible scenarios is described below:

1. The deployer writes a script to deploy and initialize the contract.

2. The attacker noticed the deployment and initialized the contract before the initSigners() called by the deployer is

committed (this can be achieved by front-running).

3. The deployment script mistakenly ignores the error of initializing the contract and continues executing other

transactions in the script.

In this way, the attacker can inject suspicious addresses into the signers of the contract.

Recommendation

We recommend checking the status of initialization in the deployment process adding proper access control to the

aforementioned functions.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in WaffleStay.sol in the commit

e8e0a3cc777e7c6a642c27b5a43941ed0a1c2f9b

WSE-03 WAFFLESTAY

https://accelerator.audit.certikpowered.info/project/103aadf0-44d4-11ed-bbf3-df7ec279e9a1/report?fid=1667858589895
https://github.com/wafflestay/WAFL/tree/e8e0a3cc777e7c6a642c27b5a43941ed0a1c2f9b

WSE-04 MISSING CHECK FOR v AND s

Category Severity Location Status

Logical Issue Informational WAFL/WaffleStayERC20.sol (cbfa735): 617 Resolved

Description

The following description is adapted from OpenZeppelin's ECDSA file:

EIP-2 still allows signature malleability for ecrecover() . Appendix F in the Ethereum Yellow paper, defines the valid range

for s in (311): 0 < s < secp256k1n ÷ 2 + 1 and for the recovery identifier (312): v ∈ {0,1} . This should not be

confused with the input for ecrecover() where v ∈ {27,28} . (See doc) However, these values can be obtained by

taking 27 + "recovery identifier" , so that they will also yield a unique signature and are often the v values returned

from signatures. (For example web3.eth.accounts.sign())

If your library generates malleable signatures, such as s -values in the upper range, calculate a new s -value with

0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or vice

versa. If your library also generates signatures with 0/1 for v instead 27/28 , add 27 to v so that ecrecover()

accepts these signatures as well.

Recommendation

We recommend adding the following checks or to consider the example in ECDSA.sol from the OpenZeppelin library.

require(uint256(s) <=

0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0, "ECDSA: invalid

signature 's' value");

require(uint8(v) == 27 || uint8(v) == 28, "ECDSA: invalid signature 'v' value");

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in WaffleStay.sol in the commit

e8e0a3cc777e7c6a642c27b5a43941ed0a1c2f9b

WSE-04 WAFFLESTAY

https://accelerator.audit.certikpowered.info/project/103aadf0-44d4-11ed-bbf3-df7ec279e9a1/report?fid=1667858363070
https://eips.ethereum.org/EIPS/eip-2
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/execution-specs/autoapi/ethereum/frontier/vm/precompiled_contracts/ecrecover/index.html
https://web3js.readthedocs.io/en/v1.7.5/web3-eth-accounts.html
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol
https://github.com/wafflestay/WAFL/tree/e8e0a3cc777e7c6a642c27b5a43941ed0a1c2f9b

OPTIMIZATIONS WAFFLESTAY

ID Title Category Severity Status

WSE-05 Functions Can Be Merged Gas Optimization Optimization Resolved

OPTIMIZATIONS WAFFLESTAY

https://accelerator.audit.certikpowered.info/project/103aadf0-44d4-11ed-bbf3-df7ec279e9a1/report?fid=1667852366477

WSE-05 FUNCTIONS CAN BE MERGED

Category Severity Location Status

Gas Optimization Optimization WAFL/WaffleStayERC20.sol (cbfa735): 547, 561 Resolved

Description

The freezeAccount() and unFreezeAccount() functions can be merged into a single function because the only

difference between two functions is the emit event.

Recommendation

We advise the team to merge freezeAccount() and unFreezeAccount() and remove the redundant one.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in WaffleStay.sol in the commit

e8e0a3cc777e7c6a642c27b5a43941ed0a1c2f9b

WSE-05 WAFFLESTAY

https://accelerator.audit.certikpowered.info/project/103aadf0-44d4-11ed-bbf3-df7ec279e9a1/report?fid=1667852366477
https://github.com/wafflestay/WAFL/tree/e8e0a3cc777e7c6a642c27b5a43941ed0a1c2f9b

FORMAL VERIFICATION WAFFLESTAY

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied automated formal

verification (symbolic model checking) to prove that well-known functions in the smart contracts adhere to their expected

behavior.

Considered Functions And Scope

Verification of ERC-20 compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc20-transfer-revert-zero Function transfer Prevents Transfers to the Zero Address

erc20-transfer-correct-amount Function transfer Transfers the Correct Amount in Non-self Transfers

erc20-transfer-correct-amount-self Function transfer Transfers the Correct Amount in Self Transfers

erc20-transfer-change-state Function transfer Has No Unexpected State Changes

erc20-transfer-exceed-balance
Function transfer Fails if Requested Amount Exceeds Available

Balance

erc20-transfer-recipient-overflow Function transfer Prevents Overflows in the Recipient's Balance

erc20-transfer-false
If Function transfer Returns false , the Contract State Has Not Been

Changed

erc20-transfer-never-return-false Function transfer Never Returns false

erc20-transferfrom-revert-from-zero Function transferFrom Fails for Transfers From the Zero Address

erc20-transferfrom-revert-to-zero Function transferFrom Fails for Transfers To the Zero Address

FORMAL VERIFICATION WAFFLESTAY

Property Name Title

erc20-transferfrom-correct-amount
Function transferFrom Transfers the Correct Amount in Non-self

Transfers

erc20-transferfrom-correct-amount-self Function transferFrom Performs Self Transfers Correctly

erc20-transferfrom-correct-allowance Function transferFrom Updated the Allowance Correctly

erc20-transferfrom-fail-exceed-balance
Function transferFrom Fails if the Requested Amount Exceeds the

Available Balance

erc20-transferfrom-change-state Function transferFrom Has No Unexpected State Changes

erc20-transferfrom-fail-exceed-allowance
Function transferFrom Fails if the Requested Amount Exceeds the

Available Allowance

erc20-transferfrom-false
If Function transferFrom Returns false , the Contract's State Has Not

Been Changed

erc20-transferfrom-fail-recipient-overflow Function transferFrom Prevents Overflows in the Recipient's Balance

erc20-transferfrom-never-return-false Function transferFrom Never Returns false

erc20-totalsupply-succeed-always Function totalSupply Always Succeeds

erc20-totalsupply-correct-value
Function totalSupply Returns the Value of the Corresponding State

Variable

erc20-totalsupply-change-state Function totalSupply Does Not Change the Contract's State

erc20-balanceof-succeed-always Function balanceOf Always Succeeds

erc20-balanceof-correct-value Function balanceOf Returns the Correct Value

erc20-allowance-succeed-always Function allowance Always Succeeds

erc20-balanceof-change-state Function balanceOf Does Not Change the Contract's State

erc20-allowance-correct-value Function allowance Returns Correct Value

erc20-allowance-change-state Function allowance Does Not Change the Contract's State

erc20-approve-revert-zero Function approve Prevents Giving Approvals For the Zero Address

erc20-approve-succeed-normal Function approve Succeeds for Admissible Inputs

erc20-approve-correct-amount Function approve Updates the Approval Mapping Correctly

FORMAL VERIFICATION WAFFLESTAY

Property Name Title

erc20-approve-change-state Function approve Has No Unexpected State Changes

erc20-approve-false
If Function approve Returns false , the Contract's State Has Not Been

Changed

erc20-approve-never-return-false Function approve Never Returns false

Verification Results

For the following contracts, model checking established that each of the 38 properties that were in scope of this audit (see

scope) are valid:

Contract WaffleStayERC20 (Source File WAFL/WaffleStayERC20.sol)

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-correct-amount True

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-recipient-overflow True

erc20-transfer-false True

erc20-transfer-never-return-false True

FORMAL VERIFICATION WAFFLESTAY

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-correct-amount True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-change-state True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-false True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-never-return-false True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

FORMAL VERIFICATION WAFFLESTAY

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

FORMAL VERIFICATION WAFFLESTAY

APPENDIX WAFFLESTAY

Finding Categories

Categories Description

Centralization

/ Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX WAFFLESTAY

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with

the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL

WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE

FOREGOING, CERTIK MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE

ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE

USE THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE,

ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE

DISCLAIMER WAFFLESTAY

FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY

KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE

COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS OR SERVICES, OPERATE

WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR

THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME

NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER WAFFLESTAY

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

WaffleStay Preliminary Comments CertiK Verified on Nov 21st, 2022 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

